Renovation of shopping centres in Norway

Matthias Haase and Kristian Stenerud Skeie

SINTEF Building and Infrastructure, Trondheim, Norway
Content

• Introduction
• Objectives
• Methodology
• Results
• Discussion
• Conclusions

www.commonenergyproject.eu
Introduction

The CommONEnergy project wants to transform shopping malls into lighthouses of energy efficient architectures and systems.

The objective is to re-conceptualize shopping malls through deep retrofittting utilizing an holistic systemic approach involving innovative technologies and solution sets.

Performance targets:

• Up to 75% reduction of energy demand (factor 4)
• Power peak shaving
• 50% increased share of renewable energy source favoured by intelligent energy management and effective storage
• Improvement of comfort and health conditions for occupants and visitors
Transform shopping malls into lighthouses of energy efficient architectures and systems

CommONEnergy

Partners

- Monitoring and control system manufacturer
- HVAC, Refrigeration and Lighting manufacturer
- Storage systems manufacturers
- Solar system manufacturer
- Materials manufacturer
- Building enterprises
- R&D experts (building physics, HVAC+R systems, monitoring, lighting, materials)
- Engineering/Architectural consultants
- Building owners
Introduction

- The planning of a high-quality retrofitting requires taking into consideration different aspects simultaneously:
 - climate and location
 - architecture
 - selection of HVAC, lighting, refrigeration, renewable energy sources and storage systems.
- Due to the variety of systems present in e.g. shopping malls, their retrofitting needs a decision process based on a comprehensive evaluation approach which considers the actual energy performance of the building, climate, management and user behaviour.
- Building energy simulations allow to identify effective retrofitting solutions and to assess the associated energy savings, power need profile and impact on comfort.
Objectives

- An advanced modelling process was used with help of Integrative Modelling Environment (IME). The IME is based on the Trnsys simulation software and it has been developed to:
 - i) support the shopping malls retrofitting phases managing complex systems;
 - ii) run parametric analysis of different configurations;
 - iii) develop control strategies for the different systems and for the whole system;
 - iv) gather in the same numerical model contributions from different partners (in EU project).
Methodology

• The IME gathers and couples in the same simulation model
 i. building
 ii. HVAC and refrigeration systems and components
 iii. daylighting/shading/lighting (iv) storage technologies
 iv. RES technologies
 v. natural ventilation and infiltration
 vi. non-conventional envelope solutions (vegetation, multi-functional coating and materials, etc.).
Methodology

• The modularity of the IME allows, with reduced modelling efforts:
 i. To characterize energy savings of shopping mall retrofitting scenarios
 ii. To define and optimize control algorithms at whole building and/or sub-system level;
 iii. To address optimal scenarios by overall energy system parameterization.
 iv. To optimize installed power.
Figure 1 – aerial photo of the shopping centre.
Building

- Ground floor
- First floor
Building

Thermal zone model

<table>
<thead>
<tr>
<th>Zone typology</th>
<th>Zone group area [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shops</td>
<td>13969</td>
</tr>
<tr>
<td>Parking</td>
<td>308</td>
</tr>
<tr>
<td>Common areas</td>
<td>2776</td>
</tr>
<tr>
<td>Warehouse</td>
<td>1217</td>
</tr>
<tr>
<td>Office</td>
<td>161</td>
</tr>
<tr>
<td>Restaurants</td>
<td>655</td>
</tr>
</tbody>
</table>

- Number of thermal zones: 24
- Floor height [m]: 6.00
- Restaurant / office floor height [m]: 3.00
Solutions

<table>
<thead>
<tr>
<th>Solutions</th>
<th>measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lighting</td>
<td>Various measures for CMA, shops, restaurants, service areas</td>
</tr>
<tr>
<td>2 Ventilation</td>
<td>Natural ventilation in summer, better infiltration by new entrances</td>
</tr>
<tr>
<td>3 Appliances</td>
<td>Energy efficient appliances, escalators etc.</td>
</tr>
<tr>
<td>4 Heat recovery</td>
<td>High efficient heat recovery in 4 AHU</td>
</tr>
<tr>
<td>5.1 RES – Heat pump</td>
<td>Second heat pump</td>
</tr>
<tr>
<td>5.2 RES – PV</td>
<td>6750m2 PV plant (750kWp)</td>
</tr>
<tr>
<td>5.3 RES – wind power</td>
<td>4 Wind power plants (600kW), (CHP?)</td>
</tr>
</tbody>
</table>
Results – Solution 1: Efficient lighting system and control

- Lighting power density is reduced down to 4.5 W/m² in the common areas and galleries and to 18.1 W/m² in the vending area (shops, midsize stores, food store) because of the installation of LED lamps.
- Advanced controls allow to reduce lighting intensity by half during preparation hours, before and after the opening time, and also during night milieu, after sunrise during opening time. The concept of the zonal spatial distribution consisting of a comprehensive set of solutions that was applied that let us expect savings in energy demand of around 60% against the initial situation. These measures include:
 - Daylight harvesting by 3 light tubes illuminating the center of the sale room with natural light.
 - Application of newly developed LED high lumen retail wallwasher which precisely illuminates merchandise with high efficacy and homogeneity. Glare will be reduced due to very good longitudinal glare control. Beam angle was extended to 120° in order to illuminate not only the merchandise wall but also the area in front to enable optimal examination of goods by customers.
Results – Solution 1: Efficient lighting system and control

- Opening hours
 - Starting from the strategies that BLL proposed for the City Sud democase, the schedules and the values were used as a retrofit solution for the reference building.
 - According to BLL artificial lighting design the schedule is basically characterized by four period within a day:
 - Out of Operation: is the period in which the shopping centre is closed (at night, Sunday and during holidays)
 - Preparation Hours-Morning: is the period before the public opening of the shopping centre. During this time some internal activities are performed (e.g. cleaning, restock of supermarket, shops, ecc...)
 - Business hour corresponds to the public opening hour of the shopping centre
 - Preparation Hours-Evening: same of the morning, is the period just after the closing to the public of the shopping centre
Results

Primary energy consumption, Qpe [kWhpe/m²·y]

- Baseline
- CMA
- CMA and shops
- Lighting case 1
- Lighting case 2
- Lighting case 3
- Lighting case 4
- Lighting case 5

Categories:
- Cooling
- Heating
- Ventilation
- Refrigeration
- Appliances
- Lighting
Results

Energy consumption, Q_{pe} [kWh_{pe}/m^2-y]
Conclusions

- The efforts for the development of a shopping mall model can be eased through the use of a modelling environment that integrates the different parts of a shopping mall (building, energy plant and control) and facilitates the implementation of control strategies.
- Moreover, a modular structure and a well-defined parameters and inputs implementation, helps the analysis of the optimal solution and the post processing of simulation results.
- It is expected that investment costs will provide a payback period of max 7 years. Economic evaluation needs to be further analysed.
Acknowledgements

• The research leading to these results has received funding from the European Community Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 608678.
Summary

- Introduction
- Objectives
- Methodology
- Results
- Discussion
- Conclusions

www.commonenergyproject.eu