

Energy sharing effects in a cluster of buildings in the context of energy market changes

Genku Kayo

Department of Energy Technology, Aalto University, Espoo, Finland genku.kayo@aalto.fi

BuildSim-Nordic 2014, Espoo, Finland, 25.-26.9.2014, Otakaari 1, H304

Background

Zero Energy Building (ZEB)/ Zero Carbon Building (ZCB)

- Energy Performance of Buildings directive (EPBD) says that all new buildings must be nearly ZEB by 2020.
- However, it is said that achieving a ZEB status without the grid would be quite difficult.

Zero Energy Community/ Zero Carbon Community

- focuses on ZEB approaches not only single building but also a group of buildings, so called "energy community".
- is a cluster of buildings, in which every building can generate both of electricity and heat with micro-generation technologies such as CHP or PV, and can share both of energy among themselves.

Network of energy distribution

www.carlsterner.com/research/2009_resilience_and_decentralization.shtml

Questions

- Best coupling of buildings.
- When and how much energies should be utilized among buildings.
- Optimal capacities of generation, and optimal operation modes.
- Ideal energy system composition of each building (CHP, renewables, etc.).
- Integration of local energy systems and building energy systems.
 (e.g. District heating network)

Decentralized

Distributed

Methodology

- Energy system
- Case study
- Demand profile
- Local energy production (CHP)

Boundary and energy flow in the case of two separated buildings

Boundary and energy flow in the case of cluster of buildings with sharing energy

Four different buildings in this study

	1: Office	2: Hotel	3: Hospital	4: Shop centre
	6,000m ²	6,000m ²	6,000m ²	6,000m ²
case12	X	X		
case13	X		X	
case14	X			X
case23		X	X	
case24		X		X
case34			X	X
case123	X	X	X	
case124	X	X		X
case134	X		X	X
case234		X	X	X
case1234	Х	Х	Х	Х

Demand profile

Local energy production (CHP)

Capacity: P_{chp.e}

Depending on peak electricity demand

$$P_{chp.e} = 0.3 E_{peak}$$

No.	Building type	$P_{chp.e}$
1 2	Office Hotel	117 111
3	Hospital	116
4	Shopping centre	175

Operation strategy

- Electricity tracking operation (*el tr.*)
- Heat tracking operation (he tr.)
- Constant operation (const.)

Result

Annual primari energy

Annual primary energy (Connected 2 buildings)

Ecological and economical study

- CO₂ emission
- Operation cost

Dramatic changes in energy situation

before and after the accident, March 2011

Power Supply Configuration in Japan

Energy white paper 2013, Agency for Natural Resources and Energy www.enecho.meti.go.jp/topics/hakusho/2013energyhtml/2-1-4.html

CO₂ emission factors of power companies

	Before the	After the	
kg-CO ₂ /kWh	accident	accident	
	2009	2012	
Hokkaido	0.433	0.688	159 %
Tohoku	0.468	0.600	128 %
Tokyo	0.384	0.525	137 %
Chubu	0.474	0.516	109 %
Hokuriku	0.374	0.663	177 %
Kansai	0.294	0.514	175 %
Chugoku	0.628	0.728	116 %
Shikoku	0.407	0.700	172 %
Kyusyu	0.369	0.612	166 %
Okinawa	0.931	0.903	97 %

www.sapporo-convention.net/toolkit/coefficient.html www.itmedia.co.jp/smartjapan/articles/1312/26/news014.html ja.wikipedia.org/wiki/%E9%9B%BB%E7%B7%9A%E8%B7%AF

CO2 emission reduction by energy sharing

Gas: 0.175kg-CO₂/kWh

After the accident; 2012 0.525kg-CO₂/kWh

/m2

Operation cost reduction by energy sharing

[MWh]

If the electricity price were raised,

Electricty price; 21 JPY/kWh

[1000 EUR] 420 -420 -210 210 7200 2000 Primary energy reduction [GJ] 5400 1500 h1234 h123 e234 e134 3600 1000 h134 h124 • e 1 2 4 e14 e34 1800 500 e24 h14 -15000 -30000 15000 30000 operation cost reduction [1000JPY]

Electricty price; 31.5 JPY/kWh

Gas: 12.5 JPY/kWh

/m2

Operation cost reduction by energy sharing

[MWh]

if the electricity selling price were doubled in FIT,

Electricty selling price; 6 JPY/kWh

[1000 EUR] 420 -420 -210 210 7200 2000 Primary energy reduction [GJ] 5400 1500 h1234 h123 e234 e134 3600 1000 h134 h124 • e 1 2 4 e/14 e34 1800 500 e24 h14 -15000 -30000 15000 30000 operation cost reduction [1000JPY]

Electricty selling price; 12 JPY/kWh

Gas: 12.5 JPY/kWh

/m2

Conclusions

Primary energy consumption

- It can be reduced by sharing both electricity and heat.
- Advantage of energy sharing depends on how the various types of buildings and CHP operational strategies are combined.

CO₂ reduction and Operation cost

 Energy sharing has the possibility to provide resiliency against economic and environmental changes by considering CHP operation modes and combinations of buildings.

Future research

- In the case of Japanese Feed-in Tariff, the market prices for buying/selling electricity differ according to the renewable energy compositions. Thus it should be considered into scenarios that involve other forms of renewable energy.
- Energy market situations of different countries should also be studied.

Thank you for your attention! and Question?

Acknowledgement:

The author would like to acknowledge the Academy of Finland.

Project: Nearly zero energy community by integrating and

optimizing local energy systems.

RESEARCH FUNDING AND EXPERTISE

Annual primary energy (Connected 3, 4 buildings)

