IBPSA-Nordic Seminar 2013

Selection of micro-cogeneration heat and power achieving Net Zero Energy Building using overall matching index

Ayman Mohamed
HVAC Department
Energy Technology
Aalto University
9/20/2013

Objectives

1. Define the overall weighting matching index (WMI)
2. Introduce the two opposite extreme situations for NZEB regarding the matching capability.
3. Create a physical method to calculate the weighting factors of OEF and OEM indices. (Preferences)
4. Formulate mathematical formulas for the weighting factors.
5. Present the applicability of using the annual WMI regarding the matching analysis instead of four annual OEF and OEM indices by simulating an onsite bio-syngas fuelled based micro-cogeneration heat and power (micro-CHP) connected to a single family house in Helsinki, Finland (achieving NZEB) under thermal tracking strategies.
Simulated single family house in Helsinki, Finland (Simulation tool is Transys 17)

Plan view of the single family house (all dimensions in meters).

<table>
<thead>
<tr>
<th>Heating demands (AHU, space, and DHW heating)</th>
<th>Electrical demands(^{(a)}) (Ventilation fan, lighting, and equipments)</th>
<th>Peak heating demands (AHU, space, and DHW heating)</th>
<th>Peak electrical demands(^{(a)}) (Ventilation fan, lighting, and equipments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual energy (kWh/m (^{2}))</td>
<td>90.3</td>
<td>29.9</td>
<td>6.0</td>
</tr>
<tr>
<td>Peak power (kW)</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(a)}\) The electric demands listed exclude the electricity consumption of the circulated pump of the micro-CHP and auxiliary electric heaters.

Bio-syngas fuelled based micro-CHP operates with thermal tracking strategy
Basic matching indices OEF & OEM

On-site energy fraction (OEF) indicates the proportion of the load covered by the on-site generated energy, while on-site energy matching (OEM) indicates the proportion of the on-site generated energy that is used in the load rather than being dumped or exported.

Extended matching indices topology
Extended Matching Indices

\[
OEFe = \int_{t_1}^{t_2} \min \left[G_{\text{HCRF, elec}}(t) + G_{\text{PV, elec}}(t) - ES_{\text{elec}}(t) - l_s(t) \cdot L_{\text{elec}}(t) + E_{\text{eff, elec}}(t) + E_{\text{st, elec}}(t) \right] dt \\
OEFe = 0 \leq OEFe \leq 1
\]

\[
OEFe = \int_{t_1}^{t_2} \min \left[G_{\text{HCRF, th}}(t) + G_{\text{PV, th}}(t) + H_{\text{PV, th}}(t) - HS_{\text{th}}(t) - l_s(t) \cdot L_{\text{th}}(t) \right] dt \\
OEFe = 0 \leq OEFe \leq 1
\]

\[
OEMe = \int_{t_1}^{t_2} \min \left[G_{\text{HCRF, elec}}(t) + G_{\text{PV, elec}}(t) + E_{\text{eff, elec}}(t) + E_{\text{st, elec}}(t) \right] dt \\
OEMe = 0 \leq OEMe \leq 1
\]

\[
OEMh = \int_{t_1}^{t_2} \min \left[G_{\text{HCRF, th}}(t) + G_{\text{PV, th}}(t) + H_{\text{PV, th}}(t) + HS_{\text{th}}(t) + l_s(t) \cdot L_{\text{th}}(t) \right] dt \\
OEMh = 0 \leq OEMh \leq 1
\]

Weighting matching index WMI

\[
WMI = w_1 OEFe + w_2 OEMe + w_3 OEFh + w_4 OEMh,
\]

\[
\sum_{i=1}^{4} w_i = 1, \quad 0 \leq w_i \leq 1, \quad 0 \leq WMI \leq 1
\]

- How can the weighting factors be defined?
- **For nearly and net ZEB**, there are two extreme situations regarding the building grid interaction.
- The first extreme situation is a **load matching priority strategy** (maximizing the on-site energy fraction OEF for both electrical and thermal energies).
- The opposite extreme situation is a **export priority strategy** (minimizing the on-site matching index OEM for both electrical and thermal energies as a goal to reach NZEB balance).
Primary energy approach

Table 1: The crediting factors of energy carriers.

<table>
<thead>
<tr>
<th>Weighting system</th>
<th>Unit</th>
<th>Primary energy factors</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electricity</td>
<td>District heating</td>
<td>Bio-syngas</td>
<td>Solar energy</td>
</tr>
<tr>
<td>Primary energy</td>
<td>kWh/kWh_{end}</td>
<td>2.23</td>
<td>0.77</td>
<td>0.17</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- **Based on the definition of OEF:**
 - It shows the proportion of the load covered by the on-site generated energy.
 - What does it mean? It means that, by increasing OEF, the portion of the exported energies (Electricity or DH) will decrease and vice versa. Thus, OEF_e can be weighted according to grid electricity PE factors and OEF_h can be weighted according to the DH PE factor as well. The benefits of that are:
 1. OEF_e and OEF_h will be weighted proportionally based on corresponding energy quality.
 2. The weighting factors are reflecting the first extreme situation mentioned in previous slide.

Primary energy approach

- **Based on the definition of OEM,**
 - It shows the proportion of the on-site generated energy that is used in the load rather than being exported.
 - What does it mean? It means that, by increasing OEM, the portion of the utilized on-site generated energy will increase and vice versa. In this study, the m-CHP fed by bio-SNG is considered as on-site. Thus, any produced electricity and heat are on-site generated energies. Comparing the PF factors of bio-SNG with that of grid electricity and DH, bio-SNG has lowest PE factors. Thus, bio-SNG PE factor can be used to weight both OEM_e and OEM_h. The benefits of that are:
 1. OEM_e and OEM_h will be weighted proportionally based on corresponding fuel fed to CHP.
 2. The weighting factors are reflecting the second extreme situation mentioned earlier.
Mathematical model of weighting factors for only CHP

\[
\begin{align*}
W_1 &= \frac{f_{\text{ele.grid}}}{f_{\text{ele.grid}}+f_{\text{h.grid}}+f_{\text{CHP.d}}+f_{\text{CHP.h}}} \\
W_2 &= \frac{f_{\text{CHP.d}}}{f_{\text{ele.grid}}+f_{\text{h.grid}}+f_{\text{CHP.d}}+f_{\text{CHP.h}}} \\
W_3 &= \frac{f_{\text{h.grid}}}{f_{\text{ele.grid}}+f_{\text{h.grid}}+f_{\text{CHP.d}}+f_{\text{CHP.h}}} \\
W_4 &= \frac{f_{\text{CHP.h}}}{f_{\text{ele.grid}}+f_{\text{h.grid}}+f_{\text{CHP.d}}+f_{\text{CHP.h}}} \\
\end{align*}
\]

Allocated based on energy content method

\[
\begin{align*}
\frac{f_{\text{CHP.d}}}{\eta_{\text{CHP,overall}}} &= \frac{f_{\text{F}}}{\eta_{\text{CHP,overall}}} \\
\frac{f_{\text{CHP.h}}}{\eta_{\text{CHP,overall}}} &= \frac{f_{\text{F}}}{\eta_{\text{CHP,overall}}} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.660</td>
<td>0.056</td>
<td>0.228</td>
<td>0.056</td>
</tr>
</tbody>
</table>

Results thermal tracking strategy

- M-CHP overall efficiency = 90%

- Without installing PV, the m-CHP with P/H in range 0.7-0.8 and nominal electric capacity of 2.0 kW achieves the NZEB with higher WMI of 0.75.
Mathematical model of weighting factors at several onsite energy systems (CHP, PV and STC)

\[W_1 = \frac{\text{fele.grid + f.elec} + \text{grid + f.on-site.anelec} + \text{fele.on-site.anh, th}}{\text{fele.grid + f.elec} + \text{grid + f.on-site.anelec} + \text{fele.on-site.anh, th}} \]

\[W_2 = \frac{\text{fele.grid + f.elec} + \text{grid + f.on-site.anelec} + \text{fele.on-site.anh, th}}{\text{fele.grid + f.elec} + \text{grid + f.on-site.anelec} + \text{fele.on-site.anh, th}} \]

\[W_3 = \frac{\text{fele.grid + f.elec} + \text{grid + f.on-site.anelec} + \text{fele.on-site.anh, th}}{\text{fele.grid + f.elec} + \text{grid + f.on-site.anelec} + \text{fele.on-site.anh, th}} \]

\[W_4 = \frac{\text{fele.grid + f.elec} + \text{grid + f.on-site.anelec} + \text{fele.on-site.anh, th}}{\text{fele.grid + f.elec} + \text{grid + f.on-site.anelec} + \text{fele.on-site.anh, th}} \]

NZEB achievement by installing the required PV area

- After installing the required PV to achieve NZEB for all cases, the m-CHP with P/H in range 0.55-0.75 and nominal electric capacity of 1.5 kW (with around 20 m² PV) achieve the NZEB with higher WMI of 0.77.
Results and Conclusions

1. In case of the single family house, regarding m-CHP operates thermal tracking strategy, the following findings are observed:
 a. Without installing PV, the m-CHP with P/H in range 0.7-0.8 and nominal electric capacity of 2.0 kW.e achieves the NZEB with higher WMI of 0.75.
 b. After installing the required PV to achieve NZEB for all cases, the m-CHP with P/H in range 0.55-0.75 and nominal electric capacity of 1.5 kW.e (with around 20 m² PV) achieve the NZEB with higher WMI of 0.77.

3. The annual WMI can be applied to be a matching indicator providing a macroscopic view.

4. Using the primary energy factors of the energy carriers crossing the building boundary to calculate the weighting factors is an appropriate way to calculate the weighting factors of WMI regarding the NZEB situations. Also, the mathematical model of weighting factors is created to be applicable with single or hybrid supply systems.

5. The annual WMI can be used as an objective in the net and nearly ZEB optimization problems.
Thank you!

Ayman Mohamed
Ayman.mohamed@aalto.fi
Energy Technology Dept.
Aalto University