

Comparison of convective surface heat transfer coefficients in IDA ICE and CFD.

Marie Rugholm Krusaa Industrial PhD

DTU Civil Engineering Department of Civil Engineering 20 °C

1. Introduction

- Near-Zero Energy buildings by 2020
- Focus on comfort and productivity
- Challenges in simulation tools.
- IDA ICE automatic algorithm for building spaces with typically ACH of 0-7 h⁻¹.
- Diffuse ventilation plenum has ACH between 10-40 h⁻¹.
- HTC in small enclosures

2. Method – IDA ICE

• IDA ICE, internal convective heat transfer coefficients

Figure 1. The convective heat transfer coefficient. (BRIS)

• CD-model: Floor $h = 3.873 \cdot r + 0.082 \cdot ACH^{0.98}$

Ceiling
$$h = 2.234 \cdot r + 4.099 \cdot ACH^{0.503}$$

Where
$$r = MIN(5, ACH)/5)$$

2. Method – CFD

- Heating: 30 C
- Air temp.: 20 C
- Diffuse ventilation uniform flow in CFD.

3. Results

5. Conclusion

- Large differences between CFD and IDA ICE
- HTC module in IDA ICE could be expanded for small enclosures
- A way to make your own function for HTC in IDA ICE.
 Which hopefully Mika, already have a solution for.
- Used the numbers from my CFD calculation and added them as fixed numbers in IDA ICE.

Questions?

